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Chapter 5

Constrained Optimization

Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints
that appear in these problems are typically nonlinear. This motivates our interest in general
nonlinearly constrained optimization theory and methods in this chapter.

Recall the statement of a general optimization problem,

minimize f(x) (5.1)

with respect to x ∈ Rn (5.2)

subject to ĉj(x) = 0, j = 1, . . . , m̂ (5.3)

ck(x) ≥ 0, k = 1, . . . ,m (5.4)

Example 5.21. Graphical Solution of a Constrained Optimization Problem

Suppose we want to solve the following optimization problem,

minimize f(x) = 4x2
1 − x1 − x2 − 2.5 (5.5)

with respect to x1, x2 (5.6)

subject to c1(x) = x2
2 − 1.5x2

1 + 2x1 − 1 ≥ 0, (5.7)

c2(x) = x2
2 + 2x2

1 − 2x1 − 4.25 ≤ 0 (5.8)

How can we solve this? One intuitive way would be to make a contour plot of the objective
function, overlay the constraints and determine the feasible region, as shown in Fig. 5.1. By
inspection, it is easy to see where the constrained optimum is. At the optimum, only one of the
constraints is active. However, we want to be able to find the minimum numerically, without having
to plot the functions, since this is impractical in the general case. We can see that in this case, the
feasible space comprises two disconnected regions. In addition, although all the functions involved
are smooth, the boundaries of the feasible regions are nonmsooth. These characteristics complicate
the numerical solution of constrained optimization problems.

5.1 Optimality Conditions for Constrained Problems

The optimality conditions for nonlinearly constrained problems are important because they form
the basis for algorithms for solving such problems.
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Figure 5.1: Example contours and feasible regions for a simple constrained optimization problem.

5.1.1 Nonlinear Equality Constraints

Suppose we have the following optimization problem with equality constraints,

minimize f(x)

with respect to x ∈ Rn

subject to ĉj(x) = 0, j = 1, . . . , m̂

To solve this problem, we could solve for m̂ components of x by using the equality constraints
to express them in terms of the other components. The result would be an unconstrained problem
with n− m̂ variables. However, this procedure is only feasible for simple explicit functions.

Joseph Louis Lagrange is credited with developing a more general method to solve this problem,
which we now review. At a stationary point, the total differential of the objective function has to
be equal to zero, i.e.,

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn = ∇fT dx = 0. (5.9)

Unlike unconstrained optimization, the infinitesimal vector dx = [ dx1, dx2, . . . , dxn]T is not ar-
bitrary here; if x is the sought after minimum, then the perturbation x + dx must be feasible:
ĉj(x+ dx) = 0. Consequently, the above equations does not imply that ∇f = 0.

For a feasible point, the total differential of each of the constraints (ĉ1, . . . ĉm̂) must also be zero:

dĉj =
∂ĉj
∂x1

dx1 + · · ·+ ∂ĉj
∂xn

dxn = ∇ĉTj dx = 0, j = 1, . . . , m̂ (5.10)

To interpret the above equation, recall that the gradient of a function is orthogonal to its contours.
Thus, since the displacement dx satisfies ĉj(x+dx) = 0 (the equation for a contour), it follow that
dx is orthogonal to the gradient ∇ĉj .
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Lagrange suggested that one could multiply each constraint variation by a scalar λ̂j and subtract
it from the objective function,

df −
m̂∑
j=1

λ̂j dĉj = 0⇒
n∑
i=1

 ∂f

∂xi
−

m̂∑
j=1

λ̂j
∂ĉj
∂xi

 dxi = 0. (5.11)

Notice what has happened: the components of the infinitesimal vector dx have become inde-
pendent and arbitrary, because we have accounted for the constraints. Thus, for this equation to
be satisfied, we need a vector λ̂ such that the expression inside the parenthesis vanishes, i.e.,

∂f

∂xi
−

m̂∑
j=1

λ̂j
∂ĉj
∂xi

= 0, (i = 1, 2, . . . , n) (5.12)

which is a system of n equations and n+m unknowns. To close the system, we recognize that the
m constraints must also be satisfied.

Suppose we define a function as the objective function minus a weighted sum of the constraints,

L(x, λ̂) = f(x)−
m̂∑
j=1

λ̂j ĉj(x)⇒

L(x, λ̂) = f(x)− λ̂T ĉ(x) (5.13)

We call this function the Lagrangian of the constrained problem, and the weights the Lagrange
multipliers. A stationary point of the Lagrangian with respect to both x and λ̂ will satisfy

∂L
∂xi

=
∂f

∂xi
−

m̂∑
j=1

λ̂j
∂ĉj
∂xi

= 0, (i = 1, . . . , n) (5.14)

∂L
∂λ̂j

= ĉj = 0, (j = 1, . . . , m̂). (5.15)

Thus, at a stationary point of the Lagrangian encapsulates our required conditions: the constraints
are satisfied and the gradient conditions (5.12) are satisfied. These first-order conditions are known
as the Karush–Kuhn–Tucker (KKT) conditions. They are necessary conditions for the optimum of
a constrained problem.

As in the unconstrained case, the first-order conditions are not sufficient to guarrantee a local
minimum. For this, we turn to the second-order sufficient conditions (which, as in the unconstrained
case, are not necessary). For equality constrained problems we are concerned with the behaviour of
the Hessian of the Lagrangian, denoted ∇2

xxL(x, λ̂), at locations where the KKT conditions hold.
In particular, we look for positive-definiteness in a subspace defined by the linearized constraints.
Geometrically, if we move away from a stationary point (x∗, λ̂∗) along a direction w that satisfies
the linearized constraints, the Lagrangian should look like a quadratric along this direction. To be
precise, the second-order sufficient conditions are

wT∇2
xxL(x∗, λ̂∗)w > 0,

for all w ∈ Rn such that

∇ĉj(x∗)Tw = 0, j = 1, . . . , m̂.
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Figure 5.2: Contour plot for constrained problem (5.18).

Example 5.22. Problem with Single Equality Constraint

Consider the following equality constrained problem:

minimize f(x) = x1 + x2 (5.16)

weight respect to x1, x2 (5.17)

subject to ĉ1(x) = x2
1 + x2

2 − 2 = 0 (5.18)

The objective function and constraint of the above problem are shown in Fig. 5.2. By inspection
we can see that the feasible region for this problem is a circle of radius

√
2. The solution x∗ is

obviously (−1,−1)T . From any other point in the circle it is easy to find a way to move in the
feasible region (the boundary of the circle) while decreasing f .

In this example, the Lagrangian is

L = x1 + x2 − λ̂1(x2
1 + x2

2 − 2) (5.19)

And the optimality conditions are

∇xL =

[
1− 2λ̂1x1

1− 2λ̂1x2

]
= 0⇒

[
x1

x2

]
=

[
1

2λ̂1
1

2λ̂1

]
∇λ̂1L = x2

1 + x2
2 − 2 = 0⇒ λ̂1 = ±1

2

To establish which are minima as opposed to other types of stationary points, we need to look
at the second-order conditions. Directions w = (w1, w2)T that satisfy the linearized constraints are
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given by

∇ĉ1(x∗)Tw =
1

λ̂1

(w1 + w2) = 0

⇒ w2 = −w1

while the Hessian of the Lagrangian at the stationary points is

∇2
xL =

[
−2λ̂1 0

0 −2λ̂1

]
.

Consequently, the Hessian of the Lagrangian in the subspace defined by w is

wT∇2
xxL(x∗)w =

[
w1 −w1

] [−2λ̂1 0

0 −2λ̂1

] [
w1

−w1

]
= −4λ̂1w

2
1

In this case λ̂∗1 = −1
2 corresponds to a positive-definite Hessian (in the space w) and, therefore, the

solution to the problem is (x1, x2)T = ( 1
2λ̂1

, 1
2λ̂1

)T = (−1,−1)T .

Also note that at the solution the constraint normal ∇ĉ1(x∗) is parallel to ∇f(x∗), i.e., there is
a scalar λ̂∗1 such that

∇f(x∗) = λ̂∗1∇ĉ1(x∗).

We can derive this expression by examining the first-order Taylor series approximations to the
objective and constraint functions. To retain feasibility with respect to ĉ1(x) = 0 we require that

ĉ1(x+ d) = 0⇒
ĉ1(x+ d) = ĉ1(x)︸ ︷︷ ︸

=0

+∇ĉT1 (x)d+O(dTd).

Linearizing this we get,

∇ĉT1 (x)d = 0 .

We also know that a direction of improvement must result in a decrease in f , i.e.,

f(x+ d)− f(x) < 0.

Thus to first order we require that

f(x) +∇fT (x)d− f(x) < 0⇒

∇fT (x)d < 0 .

A necessary condition for optimality is that there be no direction satisfying both of these
conditions. The only way that such a direction cannot exist is if ∇f(x) and ∇ĉ1(x) are parallel,
that is, if ∇f(x) = λ̂1∇ĉ1(x) holds.

By defining the Lagrangian function

L(x, λ̂1) = f(x)− λ̂1ĉ1(x), (5.20)

and noting that ∇xL(x, λ̂1) = ∇f(x)− λ̂1∇ĉ1(x), we can state the necessary optimality condition
as follows: At the solution x∗ there is a scalar λ̂∗1 such that ∇xL(x∗, λ̂∗1) = 0.

Thus we can search for solutions of the equality-constrained problem by searching for a station-
ary point of the Lagrangian function. The scalar λ̂1 is the Lagrange multiplier for the constraint
ĉ1(x) = 0.
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5.1.2 Nonlinear Inequality Constraints

Suppose we now have a general problem with equality and inequality constraints.

minimize f(x)

w.r.t x ∈ Rn

subject to ĉj(x) = 0, j = 1, . . . , m̂

ck(x) ≥ 0, k = 1, . . . ,m

The optimality (KKT) conditions for this problem can also be obtained for this case by modi-
fying the Lagrangian to be

L(x, λ̂, λ, s) = f(x)− λ̂T ĉ(x)− λT
(
c(x)− s2

)
, (5.21)

where λ are the Lagrange multipliers associated with the inequality constraints and s is a vector
of slack variables.

The first order KKT conditions are

∇xL = 0⇒ ∂L
∂xi

=
∂f

∂xi
−

m̂∑
j=1

λ̂j
∂ĉj
∂xi
−

m∑
k=1

λk
∂ck
∂xi

= 0, i = 1, . . . , n

∇λ̂L = 0⇒ ∂L
∂λ̂j

= ĉj = 0, j = 1, . . . , m̂

∇λL = 0⇒ ∂L
∂λk

= ck − s2
k = 0 k = 1, . . . ,m

∇sL = 0⇒ ∂L
∂sk

= λksk = 0, k = 1, . . . ,m

λk ≥ 0, k = 1, . . . ,m.

Now we have n+ m̂+ 2m equations and two main possibilities for each inequality constraint k:

sk > 0 : the k-th constraint is inactive, and λk = 0.

sk = 0 : the k-th constraint is active, and λk 6= 0. λk must then be non-negative, otherwise from
the first equations, the gradient of objective and gradient of constraint point in the same
direction.

Sufficient conditions are obtained by examining the second-order requirements. The set of
sufficient conditions is as follows:

1. KKT necessary conditions must be satisfied at x∗.

2. The Hessian matrix of the Lagrangian,

∇2L = ∇2f(x∗)−
m̂∑
j=1

λ̂j∇2ĉj −
m∑
k=1

λk∇2ck (5.22)

is positive definite in the feasible space. This is a subspace of n-space and is defined as follows:
any direction y that satisfies

y 6= 0 (5.23)

∇ĉTj (x∗)y = 0, for all j = 1, . . . , m̂ (5.24)

∇cTk (x∗)y = 0, for all k for which λk > 0. (5.25)
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Figure 5.3

Then the Hessian of the Lagrangian in feasible space must be positive definite,

yT∇2L(x∗)y > 0. (5.26)

Example 5.23. Problem with a Single Inequality Constraint
Suppose we now have the same problem, but with an inequality replacing the equality constraint,

minimize f(x) = x1 + x2

s.t. c1(x) = 2− x2
1 − x2

2 ≥ 0

The feasible region is now the circle and its interior. Note that ∇c1(x) now points towards the
center of the circle.

Graphically, we can see that the solution is still (−1,−1)T and therefore λ∗1 = 1/2.
Given a point x that is not optimal, we can find a step d that both stays feasible and decreases

the objective function f , to first order. As in the equality constrained case, the latter condition is
expressed as

∇fT (x)d < 0 . (5.27)

The first condition, however is slightly different, since the constraint is not necessarily zero, i.e.

c1(x+ d) ≥ 0 (5.28)

Performing a Taylor series expansion we have,

c1(x+ d)︸ ︷︷ ︸
≥0

≈ c1(x) +∇cT1 (x)d. (5.29)
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Figure 5.4: Contour plots of f(x), c1 = 0 and L(x, λ∗1, s
∗
1)

Thus feasibility is retained to a first order if

c1(x) +∇cT1 (x)d ≥ 0 . (5.30)

In order to find valid steps d it helps two consider two possibilities.

1. Suppose x lies strictly inside the circle (c1(x) > 0). In this case, any vector d satisfies the
condition (5.30), provided that its length is sufficiently small. The only situation that will
prevent us from finding a descent direction is if ∇f(x) = 0.

2. Consider now the case in which x lies on the boundary, i.e., c1(x) = 0. The conditions thus
become ∇fT (x)d < 0 and ∇cT1 (x)d ≥ 0. The two regions defined by these conditions fail to
intersect only when ∇f(x) and ∇c1(x) point in the same direction, that is, when

∇f(x)Td = λ1c1(x), for some λ1 ≥ 0. (5.31)

The optimality conditions for these two cases can again be summarized by using the Lagrangian
function, that is,

∇xL(x∗, λ∗1) = 0, for some λ∗1 ≥ 0 and λ∗1s
∗
1 = 0. (5.32)

The last condition is known as a complementarity condition and implies that the Lagrange multiplier
can be strictly positive only when the constraint is active.

Example 5.24. Lagrangian Whose Hessian is Not Positive Definite
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Figure 5.5: Contour plots of f(x), c1 = 0 and L(x, λ∗1)

minimize f(x) = −x1x2 (5.33)

s.t. ĉ1(x) = 2− x2
1 − x2

2 = 0 (5.34)

x1 ≥ 0, x2 ≥ 0 (5.35)

If we solve this problem, we will find the Hessian of the Lagrangian shown in Fig. 5.5, which is
positive semi-definite. However, it is positive definite in the feasible directions.

Example 5.25. Problem with Two Inequality Constraints

Suppose we now add another inequality constraint,

minimize f(x) = x1 + x2 (5.36)

s.t. c1(x) = 2− x2
1 − x2

2 ≥ 0, c2(x) = x2 ≥ 0. (5.37)

The feasible region is now a half disk. Graphically, we can see that the solution is now (−
√

2, 0)T

and that both constraints are active at this point.

The Lagrangian for this problem is

L(x, λ, s) = f(x)− λ1

(
c1(x)− s2

1

)
− λ2

(
c2(x)− s2

2

)
, (5.38)

where λ = (λ1, λ2)T is the vector of Lagrange multipliers. The first order optimality conditions are
thus,

∇xL(x∗, λ∗) = 0, for some λ∗ ≥ 0. (5.39)
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Figure 5.6

Applying the complementarity conditions to both inequality constraints,

λ∗1s
∗
1 = 0, and λ∗2s

∗
2 = 0. (5.40)

For x∗ = (−
√

2, 0)T we have,

∇f(x∗) =

[
1
1

]
, ∇c1(x∗) =

[
2
√

2
0

]
, ∇c2(x∗) =

[
0
1

]
,

and ∇xL(x∗, λ∗) = 0 when

λ∗ =

[
1

2
√

2

1

]
.

Now lets consider other feasible points that are not optimal and examine the Lagrangian and
its gradients at these points.

For point x = (
√

2, 0)T , both constraints are again active. However, ∇f(x) no longer lies in the
quadrant defined by ∇ci(x)Td ≥ 0, i = 1, 2 and therefore there are descent directions that are
feasible, like for example d = (−1, 0)T .

Note that ∇xL(x∗, λ∗) = 0 at this point for λ = (− 1
2
√

2
, 1)T . However, since λ1 is negative, the

first order conditions are not satisfied at this point.
Now consider the point x = (1, 0)T , for which only the second constraint is active. Linearizing

f and c as before, d must satisfy the following to be a feasible descent direction,

c1(x+ d) ≥ 0⇒ 1 +∇c1(x)Td ≥ 0, (5.41)

c2(x+ d) ≥ 0⇒ ∇c2(x)Td ≥ 0, (5.42)

f(x+ d)− f(x) < 0⇒ 1 +∇f(x)Td < 0. (5.43)

We only need to worry about the last two conditions, since the first is always satisfied for a small
enough step.

By noting that

∇f(x∗) =

[
1
1

]
, ∇c2(x∗) =

[
0
1

]
,
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we can see that the vector d =
(
−1

2 ,
1
4

)
, for example satisfies the two conditions.

Since c1(x) > 0, we must have λ1 = 0. In order to satisfy ∇xL(x, λ) = 0 we would have to find
λ2 such that ∇f(x) = λ2∇c2(x). No such λ2 exists and this point is therefore not an optimum.

5.1.3 Constraint Qualification

The KKT conditions are derived using certain assumptions and depending on the problem, these
assumptions might not hold.

A point x satisfying a set of constraints is a regular point if the gradient vectors of the active
constraints, ∇cj(x) are linearly independent.

To illustrate this, suppose we replaced the ĉ1(x) in the first example in this chapter by the
equivalent condition

ĉ1(x) =
(
x2

1 + x2
2 − 2

)2
= 0. (5.44)

Then we have

∇ĉ1(x) =

[
4(x2

1 + x2
2 − 2)x1

4(x2
1 + x2

2 − 2)x2

]
, (5.45)

so ∇ĉ1(x) = 0 for all feasible points and ∇f(x) = λ̂1∇ĉ1(x) cannot be satisfied. In other words,
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there is no (finite) Lagrange multiplier that makes the objective gradient parallel to the constraint
gradient, so we cannot solve the optimality conditions. This does not imply there is no solution;
on the contrary, the solution remains unchanged for the earlier example. Instead, what it means is
that most algorithms will fail, because they assume the constraints are linearly independent.

5.2 Penalty Function Methods

One of the ways of solving constrained optimization problems, at least approximately, is by adding
a penalty function to the objective function that depends — in some logical way — on the value
of the constraints.

The idea is to minimize a sequence of unconstrained minimization problems where the infeasi-
bility of the constraints is minimized together with the objective function.

There two main types of penalization methods: exterior penalty functions, which impose a
penalty for violation of constraints, and interior penalty functions, which impose a penalty for
approaching the boundary of an inequality constraint.

5.2.1 Exterior Penalty Functions

The modified objective function is defined as the original one plus a term for each constraint, which
is positive when the current point violates the constraint and zero otherwise.

Consider the equality-constrained problem:

minimize f(x)

subject to ĉ(x) = 0

where ĉ(x) is an m̂-dimensional vector whose j-th component is ĉj(x). We assume that all functions
are twice continuously differentiable.

We require a penalty for constraint violation to be a continuous function φ with the following
properties

φ(x) = 0 if x is feasible

φ(x) > 0 otherwise,

The new objective function is

π(x, ρ) = f(x) + ρφ(x), (5.46)

were ρ is positive and is called the penalty parameter.

The penalty method consists of solving a sequence of unconstrained minimization problems of
the form

minimize π (x, ρk)

w.r.t. x

for an increasing sequence of positive values of ρk tending to infinity. In general, for finite values of
ρk, the minimizer of the penalty function violate the equality constraints. The increasing penalty
forces the minimizer toward the feasible region.

The steps for this method are listed in Algorithm 10
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Algorithm 10 General algorithm

Check termination conditions. if xk satisfies the optimality conditions, he algorithm termi-
nates successfully.
Minimize the penalty function. With xk as the starting point, execute an algorithm to solve
the unconstrained subproblem

minimize π(x, ρk)

w.r.t. x

and let the solution of this subproblem be xk+1.
Increase the penalty parameter. Set ρk+1 to a larger value than ρk, set k = k+1 and return
to 1.

The increase in the penalty parameter for each iteration can range from modest (ρk+1 = 1.4ρk),
to ambitious (ρk+1 = 10ρk), depending on the problem.

The Quadratic Penalty Method

The quadratic penalty function is defined as

π(x, ρ) = f(x) +
ρ

2

m̂∑
i=1

ĉi(x)2 = f(x) +
ρ

2
ĉ(x)T ĉ(x). (5.47)

The penalty is equal to the sum of the square of all the constraints and is therefore greater than
zero when any constraint is violated and is zero when the point is feasible.

We can modify this method to handle inequality constraints by defining the penalty for these
constraints as

φ(x, ρ) = ρ

m∑
i=1

(max [0,−ci(x)])2 . (5.48)

Penalty functions suffer from problems of ill conditioning. The solution of the modified problem
approaches the true solution as limρ→+∞ x

∗(ρ) = x∗, but, as the penalty parameter increases, the
condition number of the Hessian matrix of π(x, ρ) increases and tends to ∞. This makes the
problem increasingly difficult to solve numerically.

5.2.2 Interior Penalty Methods

Exterior penalty methods generate infeasible points and are therefore not suitable when feasibility
has to be strictly maintained. This might be the case if the objective function is undefined or
ill-defined outside the feasible region.

The method is analogous to the external penalty method: it creates a sequence of unconstrained
modified differentiable functions whose unconstrained minima converge to the optimum solution of
the constrained problem in the limit.

Consider the inequality-constrained problem:

minimize f(x) (5.49)

subject to c(x) ≥ 0 (5.50)

where c(x) is an m-dimensional vector whose j-th component is cj(x). Again, we assume that all
functions are twice continuously differentiable.
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The Logarithmic Barrier Method

The logarithmic barrier function adds a penalty that tends to infinity as x approaches infeasibility.
The function is defined as

π(x, µ) = f(x)− µ
m∑
j=1

log (cj(x)) , (5.51)

where the positive scalar µ is called the barrier parameter.

The Inverse Barrier Function

The inverse barrier function is defined as

π(x, µ) = f(x) + µ

m∑
j=1

1

cj(x)
, (5.52)

and shares many of the same characteristics of the logarithmic barrier.
The solution of the modified problem for both functions approach the real solution as limµ→0 x

∗(µ) =
x∗. Again, the Hessian matrix becomes increasingly ill conditioned as µ approaches zero.

Similarly to the an exterior point method, an algorithm using these barrier functions finds the
minimum of π(x, µk), for a given starting (feasible) point and terminates when norm of gradient is
close to zero.

The algorithm then chooses a new barrier parameter µk+1 and a new starting point, finds the
minimum of the new problem and so on. A value of 0.1 for the ratio µk+1/µk is usually considered
ambitious.

Example 5.26. Constrained Minimization Using a Quadratic Penalty Function
Consider the inequality constrained problem 5.8, introduced in the beginning of this chapter.

Fig. 5.7 shows four different subproblems corresponding to increasing penalty parameters ρ. Recall,
that this problem has two disjoint feasible regions, and has two local minima. For the lowest value of
ρ, we obtain a function whose minimum is close to the global minimum. Although the optimization
starts in the feasible region that has the local minimum, the solution of this first subproblem
takes the solution past the local minimum towards the global minimum. As ρ increases, the other
minimum appears, but by then we already are near the global minimum. As ρ increases further,
the solution of each subproblem approaches the correct constrained minimum, but the penalized
function becomes highly nonlinear, as can be seen from the abrupt change in the contour spacing.

5.3 Sequential Quadratic Programming (SQP)

To understand the use of SQP in problems with inequality constraints, we begin by considering the
equality-constrained problem,

minimize f(x)

subject to ĉj(x) = 0, j = 1, . . . , m̂

The idea of SQP is to model this problem at the current point xk by a quadratic subproblem and
to use the solution of this subproblem to find the new point xk+1. SQP represents, in a way, the
application of Newton’s method to the KKT optimality conditions.

The Lagrangian function for this problem is L(x, λ̂) = f(x) − λ̂T ĉ(x). We define the Jacobian
of the constraints by

A(x)T = ∇ĉ(x)T = [∇ĉ1(x), . . . ,∇ĉm̂(x)] (5.53)
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Figure 5.7: Solution of a constrained problem using a sequence of problems with quadratic penalty.
Note that by starting with a low penalty parameter, the local optimum was avoided.
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which is an n×m matrix and g(x) ≡ ∇f(x) is an n-vector as before. Note that A is generally not
symmetric.

Applying the first order KKT conditions to this problem we obtain

∇L(x, λ̂) = 0⇒
[
g(x)−A(x)T λ̂

ĉ(x)

]
= 0 (5.54)

This set of nonlinear equations can be solved using Newton’s method,[
W (xk, λ̂k) −A(xk)

T

A(xk) 0

] [
pk
pλ̂

]
=

[
−gk +ATk λ̂k
−ĉk

]
(5.55)

where the Hessian of the Lagrangian is denoted by W (x, λ̂) = ∇2
xxL(x, λ̂) and the Newton step

from the current point is given by [
xk+1

λ̂k+1

]
=

[
xk
λ̂k

]
+

[
pk
pλ̂

]
. (5.56)

An alternative way of looking at this formulation of the SQP is to define the following quadratic
problem at (xk, λ̂k)

minimize
1

2
pTWkp+ gTk p

subject to Akp+ ĉk = 0

This problem has a unique solution that satisfies

Wkp+ gk −ATk λ̂k = 0

Akp+ ĉk = 0

By writing this in matrix form, we see that pk and λ̂k can be identified as the solution of the
Newton equations we derived previously.[

Wk −ATk
Ak 0

] [
pk
λ̂k+1

]
=

[
−gk
−ĉk.

]
(5.57)

This problem is equivalent to (5.55), but the second set of variables, is now the actual vector of
Lagrange multipliers λ̂k+1 instead of the Lagrange multiplier step, pλ̂.

5.3.1 Quasi-Newton Approximations

Any SQP method relies on a choice of Wk (an approximation of the Hessian of the Lagrangian) in
the quadratic model. When Wk is exact, then the SQP becomes the Newton method applied to
the optimality conditions.

One way to approximate the Hessian of the Lagrangian would be to use a quasi-Newton ap-
proximation, such as the BFGS update formula. We could define,

sk = xk+1 − xk, yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1), (5.58)

and then compute the new approximation Bk+1 using the same formula used in the unconstrained
case.
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If ∇2
xxL is positive definite at the sequence of points xk, the method will converge rapidly, just

as in the unconstrained case. If, however, ∇2
xxL is not positive definite, then using the BFGS

update may not work well.

To ensure that the update is always well-defined the damped BFGS updating for SQP was
devised. Using this scheme, we set

rk = θkyk + (1− θk)Bksk, (5.59)

where the scalar θk is defined as

θk =

1 if sTk yk ≥ 0.2sTkBksk,
0.8sTkBksk

sTkBksk−s
T
k yk

if sTk yk < 0.2sTkBksk.
(5.60)

Then we can update Bk+1 using,

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
rkr

T
k

sTk rk
, (5.61)

which is the standard BFGS update formula with yk replaced by rk. This guarantees that the
Hessian approximation is positive definite.

Note that when θk = 0 we have Bk+1 = Bk, and that θk = 1 yields an unmodified BFGS
update. The modified method thus produces an interpolation between the current Bk and the one
corresponding to BFGS. The choice of θk ensures that the new approximation stays close enough
to the current approximation to guarantee positive definiteness.

In addition to using a different quasi-Newton update, SQP algorithms also need modifications
to the line search criteria in order to ensure that the method converges from remote starting points.
It is common to use a merit function, φ to control the size of the steps in the line search. The
following is one of the possibilities for such a function:

φ(xk;µ) = f(x) +
1

µ
||ĉ||1 (5.62)

The penalty parameter µ is positive and the L1 norm of the equality constraints is

||ĉ||1 =
m̂∑
j=1

|ĉj |. (5.63)

To determine the sequence of penalty parameters, the following strategy is often used

µk =

{
µk−1 if µ−1

k−1 ≥ γ + δ

(γ + 2δ)−1 otherwise,
(5.64)

where γ is set to max(λk+1) and δ is a small tolerance that should be larger that the expected
relative precision of your function evaluations.

The full procedure an SQP with line search is described in Algorithm 11, where D denotes the
directional derivative in the pk direction.
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Algorithm 11 SQP algorithm

Input: Initial guess (x0, λ0), parameters 0 < η < 0.5
Output: Optimum, x∗

k ← 0
Initialize the Hessian estimate, B0 ← I
repeat

Compute pk and pλ̂ by solving (5.55), with Bk in place of Wk

Choose µk such that pk is a descent direction for φ at xk
αk ← 1
while φ(xk + αkpk, µk) > φ(xk, µk) + ηαkD [φ(xk, pk)] do
αk ← τααk for some 0 < τα < 1

end while
xk+1 ← xk + αkpk
λ̂k+1 ← λ̂k + pλ̂
Evaluate fk+1, gk+1, ck+1 and Ak+1

sk ← αkpk, yk ← ∇xL(xk+1, λk+1)−∇xL(xk, λk+1)
Obtain Bk+1 by using a quasi-Newton update to Bk
k ← k + 1

until Convergence

5.3.2 Inequality Constraints

The SQP method can be extended to handle inequality constraints. Consider general nonlinear
optimization problem

minimize f(x)

subject to ĉj(x) = 0, j = 1, . . . , m̂

ck(x) ≥ 0, k = 1, . . . ,m

To define the subproblem we now linearize both the inequality and equality constraints and obtain,

minimize
1

2
pTWkp+ gTk p

subject to ∇ĉj(x)T p+ ĉj(x) = 0, j = 1, . . . , m̂

∇ck(x)T p+ ck(x) ≥ 0, k = 1, . . . ,m

One of the most common type of strategy to solve this problem, the active-set method, is to
consider only the active constraints at a given iteration and treat those as equality constraints.
This is a significantly more difficult problem because we do not know a priori which inequality
constraints are active at the solution. If we did, we could just solve the equality constrained
problem considering only the active constraints.

The most commonly used active-set methods are feasible-point methods. These start with a
feasible solution a never let the new point be infeasible.

Example 5.27. Constrained Minimization Using SQP

We consider the same inequality constrained problem 5.8 that we used to demonstrated the
quadratic penalty approach. The sequence of subproblems determined by the SQP method is
shown Fig. 5.8. The feasible regions are shown shaded, and the contours are those of the Lagrangian.
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Note that these contours change for each subproblem due to a change in the Lagrange multipliers.
The intermediate Lagrangian functions are not necessarily convex, but the final one is, with an
unconstrained minimum at the constrained optimum. In this case, the algorithm converges to the
global optimum, but it could easily have converged to a the local one.
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Figure 5.8: Solution of a constrained problem using SQP. Note that the Lagrangian is not always
convex.


