
Optimization with Scipy (1)
Intro to python scipy optimization module

Harry Lee
January 17, 2018

CEE 696



Table of contents

1. Introduction

2. scipy.optimize for local unconstrained optimization

3. Constrained Optimization

1



Introduction



optimization problem

Find values of the variable x to give best (min or max) of an objective
function f(x) subject to any constraints (restrictions) g(x),h(x)

min
x

f(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m
hj(x) = 0, i = 1, . . . ,p
x ∈ X

Assume X be a subset of Rn

x : n× 1 vector of decision variables, i.e., x = [x1, x2, · · · , xn]

f(x): objective function, Rn → R

g(x): m inequality constraints Rn → R

h(x): p equality constraints Rn → R

2



My first example

Find values of the variable x to give the minimum of an objective
function f(x) = x2 − 2x

min
x

x2 − 2x

• x : single variable decision variable, x ∈ R

• f(x) = x2 − 2x: objective function, R → R

• no constraints

Thus, we are solving a single variable, unconstrained minimization
problem.

3



my_first_optimization.py using scipy.optimize.minimize

import numpy as np
import scipy.optimize as opt

objective = np.poly1d([1.0, -2.0, 0.0])
print(objective)

x0 = 3.0
results = opt.minimize(objective,x0)
print("Solution: x=%f" % results.x)

import matplotlib.pylab as plt
x = np.linspace(-3,5,100)
plt.plot(x,objective(x))
plt.plot(results.x,objective(results.x),'ro')
plt.show()

4



Objective function

• Objective function : minimize f(x)
• Maximize f(x) = Minimize -f(x)
• Examples

1. Maximize total pumping rates
∑
Qi, Qi: pumping rate at well i

2. Minimize operation costs
∑
cQi, cQi: operation cost at well i

5



Constraint set

• Simple bounds (box constraints): li ≤ xi ≤ ui
• Linear constraints

Ax = b

• Nonlinear constraints
• inequality constraint gi(x) ≥ 0
• equality constraint hi(x) = 0

Optimization solution should be in a feasible region that satisfies all
the constraints.

6



Classification

Optimization problems can be classified based on

• the type of constraints
• nature of the equations involved
• permissible value of the decision variables
• deterministic nature of the variables
• number of objective functions

7



Classification (1)

Optimization problems can be classified based on the type of
constraints

• Unconstrained optimization
• Constrained optimization

8



Classification (2)

Optimization problems can be classified based on the permissible
value of decision variables

• Discrete optimization
• Continuous optimization

9



Classification (3)

Optimization problems can be classified based on the equations
involved

• Linear programming
• Nonlinear programming

• Quadratic programming
• Geometry programming
• Global optimization

programming = optimization

10



Classification (4)

Optimization problems can be classified based on the deterministic
nature of the decision variables

• Deterministic optimization
• Stochastic optimization

11



Classification (5)

Optimization problems can be classified based on the number of
objective functions

• singleobjective problem
• multiobjective problem

12



What information we have at hand

• function information e.g., f(x)
• Perhaps gradient f′(x)
• Hopefully Hessian f′′(x)

13



Topics we will cover

• 1D optimization/Line search
• Local optimization

• Steepest Descent
• Newton, Gauss-Newton
• Conjugate Gradient

• Linear Programming
• Global optimization

• convex optimization
• stochastic search/evolutionary algorithm

• Stochastic optimization (under uncertainty)
• Multi-objective optimization
• PDE-based optimization
• Recent developments

14



scipy.optimize for local
unconstrained optimization



scipy.optimize

The scipy.optimize package provides several commonly used
optimize algorithm.

help(scipy.optimize)

• Unconstrained and constrained minimization of multivariate
scalar functions

• Global (brute-force) optimization routines
• Least-squares minimization, curve fitting
• Scalar univariate functions minimizers and root finders
• Multivariate equation system solvers

15



Inputs

Let’s assume you know how to develop a general (black-box)
optimization program. Then what inputs do you need?

• objective function
• constrain functions
• optimization method/solver
• additional parameters:

• solution accuracy (numerical precision)
• maximum number of function evaluations
• maximum number of iterations

16



How to use scipy.optimize.minimize

scipy.optimize.minimize(fun, x0, args=(), method=None,
jac=None, hess=None, hessp=None, bounds=None,
constraints=(), tol=None, callback=None, options=None)

fun (callable) objective function to be minimized
x0 (ndarray) initial guess

args (tuple, optional) extra arguments of the objective
function and its derivatives (jac, hes)

method (str, optional) optimization methods
jac (bool or callable, optional) Jacobian (gradient)

hess, hessp (callable,optional) Hessian (2nd-order grad.) and
Hessian-vector product

bounds (sequence,optional) bounds on x
tol (float,optional) tolerance for termination

options (dic,optional) method options
callback (callable, optional) function called after each iteration 17



my_first_optimization.py again

min
x

f(x2 − 2x)

import numpy as np
import scipy.optimize as opt
import matplotlib.pylab as plt

objective = np.poly1d([1.0, -2.0, 0.0])

x0 = 3.0
results = opt.minimize(objective,x0)
print("Solution: x=%f" % results.x)

x = np.linspace(-3,5,100)
plt.plot(x,objective(x))
plt.plot(results.x,objective(results.x),'ro')
plt.show() 18



Optimization result object

x (ndarray) The solution of the optimization.
success (bool) Whether or not the optimizer exited successfully.
status (int) Termination status of the optimizer.

message (str) Description of the cause of the termination
fun, jac, hess Values of objective function, its Jacobian and its

Hessian (if available)
hess_inv (object) Inverse of the objective function’s Hessian; Not

available for all solvers
nfev, njev, nhev (int) Number of evaluations of the objective

functions and of its Jacobian and Hessian
nit (int) Number of iterations performed by the optimizer

maxcv (float) The maximum constraint violation.

19



my_first_optimization.py - additional arg & option

def objective(x,coeffs):
return coeffs[0]*x**2 + coeffs[1]*x + coeffs[2]

x0 = 3.0
mycoeffs = [1.0,-2.0,0.0]
myoptions={'disp':True}
results = opt.minimize(objective,x0,args=mycoeffs,

options = myoptions)
print("Solution: x=%f" % results.x)

x = np.linspace(-3,5,100)
plt.plot(x,objective(x,mycoeffs))
plt.plot(results.x,objective(results.x,mycoeffs),'ro')
plt.show()

20



Constrained Optimization



my_second_constrained_optimization.py - inequality constraint

min
x

f(x2 − 2x)

subject to x− 2 ≥ 0

objective = np.poly1d([1.0, -2.0, 0.0])
cons = ({'type': 'ineq',

'fun' : lambda x: np.array([x[0] - 2])})
results = opt.minimize(objective,x0=3.0,

constraints = cons,
options = {'disp':True})

• constraint is defined in a dictionary with type, fun, jac, args
(extra arguments for fun and jac)

• Here we use lambda function for its brevity (but not
recommended, use def).

21



my_first_constrained_optimization.py - box constraint

min
x

f(x2 − 2x)

subject to x− 2 ≥ 0

objective = np.poly1d([1.0, -2.0, 0.0])
bnds = ((2,None),) # tuple for 1D box constraint
results = opt.minimize(objective,x0=3.0,bounds=bnds,

options = {'disp':True})

22


	Introduction
	scipy.optimize for local unconstrained optimization
	Constrained Optimization

